direct product, metacyclic, supersoluble, monomial
Aliases: C32×D20, C60⋊3C6, C10.3C62, C4⋊(C32×D5), (C3×C60)⋊5C2, C20⋊1(C3×C6), (C6×D5)⋊4C6, C15⋊5(C3×D4), C12⋊3(C3×D5), (C3×C12)⋊5D5, (C3×C15)⋊19D4, C5⋊1(D4×C32), D10⋊1(C3×C6), C6.21(C6×D5), C30.21(C2×C6), (C3×C6).39D10, (C3×C30).44C22, (D5×C3×C6)⋊7C2, C2.4(D5×C3×C6), SmallGroup(360,92)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C32×D20
G = < a,b,c,d | a3=b3=c20=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 288 in 96 conjugacy classes, 54 normal (14 characteristic)
C1, C2, C2, C3, C4, C22, C5, C6, C6, D4, C32, D5, C10, C12, C2×C6, C15, C3×C6, C3×C6, C20, D10, C3×D4, C3×D5, C30, C3×C12, C62, D20, C3×C15, C60, C6×D5, D4×C32, C32×D5, C3×C30, C3×D20, C3×C60, D5×C3×C6, C32×D20
Quotients: C1, C2, C3, C22, C6, D4, C32, D5, C2×C6, C3×C6, D10, C3×D4, C3×D5, C62, D20, C6×D5, D4×C32, C32×D5, C3×D20, D5×C3×C6, C32×D20
(1 34 60)(2 35 41)(3 36 42)(4 37 43)(5 38 44)(6 39 45)(7 40 46)(8 21 47)(9 22 48)(10 23 49)(11 24 50)(12 25 51)(13 26 52)(14 27 53)(15 28 54)(16 29 55)(17 30 56)(18 31 57)(19 32 58)(20 33 59)(61 85 157)(62 86 158)(63 87 159)(64 88 160)(65 89 141)(66 90 142)(67 91 143)(68 92 144)(69 93 145)(70 94 146)(71 95 147)(72 96 148)(73 97 149)(74 98 150)(75 99 151)(76 100 152)(77 81 153)(78 82 154)(79 83 155)(80 84 156)(101 163 139)(102 164 140)(103 165 121)(104 166 122)(105 167 123)(106 168 124)(107 169 125)(108 170 126)(109 171 127)(110 172 128)(111 173 129)(112 174 130)(113 175 131)(114 176 132)(115 177 133)(116 178 134)(117 179 135)(118 180 136)(119 161 137)(120 162 138)
(1 68 164)(2 69 165)(3 70 166)(4 71 167)(5 72 168)(6 73 169)(7 74 170)(8 75 171)(9 76 172)(10 77 173)(11 78 174)(12 79 175)(13 80 176)(14 61 177)(15 62 178)(16 63 179)(17 64 180)(18 65 161)(19 66 162)(20 67 163)(21 99 127)(22 100 128)(23 81 129)(24 82 130)(25 83 131)(26 84 132)(27 85 133)(28 86 134)(29 87 135)(30 88 136)(31 89 137)(32 90 138)(33 91 139)(34 92 140)(35 93 121)(36 94 122)(37 95 123)(38 96 124)(39 97 125)(40 98 126)(41 145 103)(42 146 104)(43 147 105)(44 148 106)(45 149 107)(46 150 108)(47 151 109)(48 152 110)(49 153 111)(50 154 112)(51 155 113)(52 156 114)(53 157 115)(54 158 116)(55 159 117)(56 160 118)(57 141 119)(58 142 120)(59 143 101)(60 144 102)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 26)(22 25)(23 24)(27 40)(28 39)(29 38)(30 37)(31 36)(32 35)(33 34)(41 58)(42 57)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 50)(59 60)(61 74)(62 73)(63 72)(64 71)(65 70)(66 69)(67 68)(75 80)(76 79)(77 78)(81 82)(83 100)(84 99)(85 98)(86 97)(87 96)(88 95)(89 94)(90 93)(91 92)(101 102)(103 120)(104 119)(105 118)(106 117)(107 116)(108 115)(109 114)(110 113)(111 112)(121 138)(122 137)(123 136)(124 135)(125 134)(126 133)(127 132)(128 131)(129 130)(139 140)(141 146)(142 145)(143 144)(147 160)(148 159)(149 158)(150 157)(151 156)(152 155)(153 154)(161 166)(162 165)(163 164)(167 180)(168 179)(169 178)(170 177)(171 176)(172 175)(173 174)
G:=sub<Sym(180)| (1,34,60)(2,35,41)(3,36,42)(4,37,43)(5,38,44)(6,39,45)(7,40,46)(8,21,47)(9,22,48)(10,23,49)(11,24,50)(12,25,51)(13,26,52)(14,27,53)(15,28,54)(16,29,55)(17,30,56)(18,31,57)(19,32,58)(20,33,59)(61,85,157)(62,86,158)(63,87,159)(64,88,160)(65,89,141)(66,90,142)(67,91,143)(68,92,144)(69,93,145)(70,94,146)(71,95,147)(72,96,148)(73,97,149)(74,98,150)(75,99,151)(76,100,152)(77,81,153)(78,82,154)(79,83,155)(80,84,156)(101,163,139)(102,164,140)(103,165,121)(104,166,122)(105,167,123)(106,168,124)(107,169,125)(108,170,126)(109,171,127)(110,172,128)(111,173,129)(112,174,130)(113,175,131)(114,176,132)(115,177,133)(116,178,134)(117,179,135)(118,180,136)(119,161,137)(120,162,138), (1,68,164)(2,69,165)(3,70,166)(4,71,167)(5,72,168)(6,73,169)(7,74,170)(8,75,171)(9,76,172)(10,77,173)(11,78,174)(12,79,175)(13,80,176)(14,61,177)(15,62,178)(16,63,179)(17,64,180)(18,65,161)(19,66,162)(20,67,163)(21,99,127)(22,100,128)(23,81,129)(24,82,130)(25,83,131)(26,84,132)(27,85,133)(28,86,134)(29,87,135)(30,88,136)(31,89,137)(32,90,138)(33,91,139)(34,92,140)(35,93,121)(36,94,122)(37,95,123)(38,96,124)(39,97,125)(40,98,126)(41,145,103)(42,146,104)(43,147,105)(44,148,106)(45,149,107)(46,150,108)(47,151,109)(48,152,110)(49,153,111)(50,154,112)(51,155,113)(52,156,114)(53,157,115)(54,158,116)(55,159,117)(56,160,118)(57,141,119)(58,142,120)(59,143,101)(60,144,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,26)(22,25)(23,24)(27,40)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(59,60)(61,74)(62,73)(63,72)(64,71)(65,70)(66,69)(67,68)(75,80)(76,79)(77,78)(81,82)(83,100)(84,99)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(101,102)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112)(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,132)(128,131)(129,130)(139,140)(141,146)(142,145)(143,144)(147,160)(148,159)(149,158)(150,157)(151,156)(152,155)(153,154)(161,166)(162,165)(163,164)(167,180)(168,179)(169,178)(170,177)(171,176)(172,175)(173,174)>;
G:=Group( (1,34,60)(2,35,41)(3,36,42)(4,37,43)(5,38,44)(6,39,45)(7,40,46)(8,21,47)(9,22,48)(10,23,49)(11,24,50)(12,25,51)(13,26,52)(14,27,53)(15,28,54)(16,29,55)(17,30,56)(18,31,57)(19,32,58)(20,33,59)(61,85,157)(62,86,158)(63,87,159)(64,88,160)(65,89,141)(66,90,142)(67,91,143)(68,92,144)(69,93,145)(70,94,146)(71,95,147)(72,96,148)(73,97,149)(74,98,150)(75,99,151)(76,100,152)(77,81,153)(78,82,154)(79,83,155)(80,84,156)(101,163,139)(102,164,140)(103,165,121)(104,166,122)(105,167,123)(106,168,124)(107,169,125)(108,170,126)(109,171,127)(110,172,128)(111,173,129)(112,174,130)(113,175,131)(114,176,132)(115,177,133)(116,178,134)(117,179,135)(118,180,136)(119,161,137)(120,162,138), (1,68,164)(2,69,165)(3,70,166)(4,71,167)(5,72,168)(6,73,169)(7,74,170)(8,75,171)(9,76,172)(10,77,173)(11,78,174)(12,79,175)(13,80,176)(14,61,177)(15,62,178)(16,63,179)(17,64,180)(18,65,161)(19,66,162)(20,67,163)(21,99,127)(22,100,128)(23,81,129)(24,82,130)(25,83,131)(26,84,132)(27,85,133)(28,86,134)(29,87,135)(30,88,136)(31,89,137)(32,90,138)(33,91,139)(34,92,140)(35,93,121)(36,94,122)(37,95,123)(38,96,124)(39,97,125)(40,98,126)(41,145,103)(42,146,104)(43,147,105)(44,148,106)(45,149,107)(46,150,108)(47,151,109)(48,152,110)(49,153,111)(50,154,112)(51,155,113)(52,156,114)(53,157,115)(54,158,116)(55,159,117)(56,160,118)(57,141,119)(58,142,120)(59,143,101)(60,144,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,26)(22,25)(23,24)(27,40)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(59,60)(61,74)(62,73)(63,72)(64,71)(65,70)(66,69)(67,68)(75,80)(76,79)(77,78)(81,82)(83,100)(84,99)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(101,102)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112)(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,132)(128,131)(129,130)(139,140)(141,146)(142,145)(143,144)(147,160)(148,159)(149,158)(150,157)(151,156)(152,155)(153,154)(161,166)(162,165)(163,164)(167,180)(168,179)(169,178)(170,177)(171,176)(172,175)(173,174) );
G=PermutationGroup([[(1,34,60),(2,35,41),(3,36,42),(4,37,43),(5,38,44),(6,39,45),(7,40,46),(8,21,47),(9,22,48),(10,23,49),(11,24,50),(12,25,51),(13,26,52),(14,27,53),(15,28,54),(16,29,55),(17,30,56),(18,31,57),(19,32,58),(20,33,59),(61,85,157),(62,86,158),(63,87,159),(64,88,160),(65,89,141),(66,90,142),(67,91,143),(68,92,144),(69,93,145),(70,94,146),(71,95,147),(72,96,148),(73,97,149),(74,98,150),(75,99,151),(76,100,152),(77,81,153),(78,82,154),(79,83,155),(80,84,156),(101,163,139),(102,164,140),(103,165,121),(104,166,122),(105,167,123),(106,168,124),(107,169,125),(108,170,126),(109,171,127),(110,172,128),(111,173,129),(112,174,130),(113,175,131),(114,176,132),(115,177,133),(116,178,134),(117,179,135),(118,180,136),(119,161,137),(120,162,138)], [(1,68,164),(2,69,165),(3,70,166),(4,71,167),(5,72,168),(6,73,169),(7,74,170),(8,75,171),(9,76,172),(10,77,173),(11,78,174),(12,79,175),(13,80,176),(14,61,177),(15,62,178),(16,63,179),(17,64,180),(18,65,161),(19,66,162),(20,67,163),(21,99,127),(22,100,128),(23,81,129),(24,82,130),(25,83,131),(26,84,132),(27,85,133),(28,86,134),(29,87,135),(30,88,136),(31,89,137),(32,90,138),(33,91,139),(34,92,140),(35,93,121),(36,94,122),(37,95,123),(38,96,124),(39,97,125),(40,98,126),(41,145,103),(42,146,104),(43,147,105),(44,148,106),(45,149,107),(46,150,108),(47,151,109),(48,152,110),(49,153,111),(50,154,112),(51,155,113),(52,156,114),(53,157,115),(54,158,116),(55,159,117),(56,160,118),(57,141,119),(58,142,120),(59,143,101),(60,144,102)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,26),(22,25),(23,24),(27,40),(28,39),(29,38),(30,37),(31,36),(32,35),(33,34),(41,58),(42,57),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,50),(59,60),(61,74),(62,73),(63,72),(64,71),(65,70),(66,69),(67,68),(75,80),(76,79),(77,78),(81,82),(83,100),(84,99),(85,98),(86,97),(87,96),(88,95),(89,94),(90,93),(91,92),(101,102),(103,120),(104,119),(105,118),(106,117),(107,116),(108,115),(109,114),(110,113),(111,112),(121,138),(122,137),(123,136),(124,135),(125,134),(126,133),(127,132),(128,131),(129,130),(139,140),(141,146),(142,145),(143,144),(147,160),(148,159),(149,158),(150,157),(151,156),(152,155),(153,154),(161,166),(162,165),(163,164),(167,180),(168,179),(169,178),(170,177),(171,176),(172,175),(173,174)]])
117 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | ··· | 3H | 4 | 5A | 5B | 6A | ··· | 6H | 6I | ··· | 6X | 10A | 10B | 12A | ··· | 12H | 15A | ··· | 15P | 20A | 20B | 20C | 20D | 30A | ··· | 30P | 60A | ··· | 60AF |
order | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 4 | 5 | 5 | 6 | ··· | 6 | 6 | ··· | 6 | 10 | 10 | 12 | ··· | 12 | 15 | ··· | 15 | 20 | 20 | 20 | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 10 | 10 | 1 | ··· | 1 | 2 | 2 | 2 | 1 | ··· | 1 | 10 | ··· | 10 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
117 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | D4 | D5 | D10 | C3×D4 | C3×D5 | D20 | C6×D5 | C3×D20 |
kernel | C32×D20 | C3×C60 | D5×C3×C6 | C3×D20 | C60 | C6×D5 | C3×C15 | C3×C12 | C3×C6 | C15 | C12 | C32 | C6 | C3 |
# reps | 1 | 1 | 2 | 8 | 8 | 16 | 1 | 2 | 2 | 8 | 16 | 4 | 16 | 32 |
Matrix representation of C32×D20 ►in GL3(𝔽61) generated by
13 | 0 | 0 |
0 | 47 | 0 |
0 | 0 | 47 |
1 | 0 | 0 |
0 | 13 | 0 |
0 | 0 | 13 |
1 | 0 | 0 |
0 | 7 | 32 |
0 | 29 | 2 |
60 | 0 | 0 |
0 | 7 | 32 |
0 | 29 | 54 |
G:=sub<GL(3,GF(61))| [13,0,0,0,47,0,0,0,47],[1,0,0,0,13,0,0,0,13],[1,0,0,0,7,29,0,32,2],[60,0,0,0,7,29,0,32,54] >;
C32×D20 in GAP, Magma, Sage, TeX
C_3^2\times D_{20}
% in TeX
G:=Group("C3^2xD20");
// GroupNames label
G:=SmallGroup(360,92);
// by ID
G=gap.SmallGroup(360,92);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-2,-5,457,223,10373]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^20=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations